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Modifications to the Representation
of the Surface Layer Processes in
The Phillips Laboratory Global Spectral Model

1. INTRODUCTION

The topic, representation of surface-layer processes in the dynamics of the
atmosphere, is embodied as a part of the Phillips Laboratory Boundary Layer System
(PL-BLS) which is in turn a component in the Phillips Laboratory Global Spectral
Model (PL-GSM).

PL-GSM is a global model of the dynamics of the atmosphere designed for
medium-range weather forecasts. It may be conveniently described as a spectral
primitive-equation model of the moist atmosphere in which three physical processes:
radiative transfer, sub-grid scale convections, and interactions with the solid earth, are
represented individually at gridpoints and connected serially, parameterized in terms
of variables and parameters defined on the grid scale. A series of technical reports is

available??®* for information on the model.
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The component of PL-GSM that represents the physics of interactions between the
atmosphere and the solid earth is called the Phillips Laboratory Boundary Layer
System (PL-BLS). It is a product of joint efforts between the scientists of the
Laboratory and the associates and students of Professor Larry Mahrt of the Oregon
State University (OSU). It applies OSU's so-called coupled-atmosphere-plant-soil
(CAPS) model at each land gridpoint, which is specified with values of a set of
characteristic parameters required by the model. The initial design of CAPS is
described in Mahrt et al. (1984),° while a later version on which this report is based is
presented in Mahrt et al. (1987).° The methodology for devising the global land surface
specification employed in this study will be documented in a separate report. At
gridpoints that are over water, the current practice specifies surface temperature with
the climatological values and assumes saturation at that temperature for the
corresponding surface specific humidity.

CAPS models the physics of interaction between the atmosphere and the solid earth
in three layers: one transitional layer in the air, commonly referred to as the turbulent
mixing layer; another transitional layer in the soil of a limited depth immediately
beneath the surface, and the third, which separates the first two, is an air layer
adjacent to the surface and is called the surface layer. The turbulent mixing and
surface layers together make up the so-called planetary boundary layer (PBL). Within
each of the transitional layers, the dynamics of the state variables are, in addition to
being influenced by body as well as inertia forces, subjected to diffusion in which
diffusivity is characteristic of the state of the medium. Both transitional layers are
divided into a number of sublayers (for example, two-layer soil Thermodynamic Model)
for discretization in practice. In the surface layer, which may be viewed as a buffer
and a couplihg that maintains an equilibrium at any moment, various fluxes are
assumed constant within the layer and are determined by boundary values and layer
conductances. These momentum and energy fluxes determine the rates of exchanges
between the atmosphere and the solid earth.

Until recently, that is, up to the 1992 version of PL-GSM, we have used the

formulas and values for boundary layer parameters that were recommended to us by
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the OSU group previously and adopted almost verbatim the entire numerical
procedure of CAPS. In 1991, the OSU group substantially revised’ the formulas for
surface-layer exchange coefficients and, in 1994, introduced us® to the method of
estimating roughness lengths over oceans suggested by a group of scientists® at the
European Centre for Medium Range Forecasts (ECMWF). It soon became obvious as
we started responding to these revisions that a systematic and in-depth review of the
representation of surface-layer processes in CAPS should accompany any effort to
install these or other potential changes. The review led to modifications 1n the ways
some surface-layer phenomena are modeled and in the manner surface energy balance
is sought. This report discusses these modifications and documents the changes
introduced.

For convenience, we shall classify changes into two kinds and discuss them
separately. Changes in formulas and methods of estimation, as recommended by the
OSU group, are referred to as the formal change while changes in modeling or
procedures are called the structural change. Section 2 treats the former and Section
3 the latter. Section 4 presents the setting and the method we used to assess the
impacts of different changes on results of the representation. Section 5 presents the
conclusions.

Throughout the rest of the report, we shall use as the standard reference the "OSU
1-D PBL Model User's Guide," version 1.0.4 by M. Ek and L. Mahrt of the Department
of Atmospheric Sciences, Strand Agriculture Hall, Room 326, Oregon State University,
Corvallis, OR 97331-2209, U.S.A., prepared March 1991. It will be referred to simply
as the 91 User's Guide and designated as UG-91. Terms used and formulas employed
will be kept aligned as closely as possible to the usage in the UG-91.

2. FORMAL CHANGES

Two formal changes are considered. One is in the formulas for surface-layer
exchange coefficients and the second is in the method of estimating roughness lengths

over oceans. Here, the changes refer to the differences between those employed in the
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1992 PL-GSM (referred to as the 'old’) and those in the latest recommendations (called

the 'new’).

2.1 Surface Layer Exchange Coefficients

(a) When |v,| > 0, where v, is the horizontal wind at the top of the surface
layer, exchange coefficients, cm for momentum and ch for heat may be put in the

forms, respectively,

cm = NpxF|, and ch = NyF,, (1)

where the N's and F's represent the factors that are, respectively, independent of and
functions of, the static stability of the layer. In the new version, these factors are

given, respectively, by

)2 1 k2

N, - oo, Ny = — lval
In 2 Bl Zn? 2
Zom Zom Zom
Ri . . )
P B, if Rip >0
b, Ri
1- 1 8 if Rig < 0
Fl = 3 k2 z 12 (3)
1-+¢ Ri, =2
1 9 B 2
(m 2 o
ZoMm
e ™2 if Riy > 0
b, Ri
1- 2B , if Riy <0
F, - | B2 z, | 12 (4)
1+¢ Ri, —
m(___) o 22 o
ZoM ZoH )




Here, v, and z, are the horizontal wind in meters per second and the height above
ground in meters at the top of the surface layer, 2 = 0.4 is the von Karman constant,
and R = 1.0 is the ratio of the drag coefficient for momentum to that for heat (after Ref.

7). Parameters b's and c's are universal constants with the following values:

b, = 10, ¢, = 75, b, = 15, ¢; = T5. (5)

2gy and z,y are roughness length for momentum and for heat, respectively. PL-GSM
has had a set of fixed values of z,,, for each of the Gaussian gridpoints derived from a
source at the U.S. National Centers for Environmental Prediction (NCEP). Currently
2,y is set at a hundredth of z,, following the conventional wisdom. Rig is the bulk

Richardson number for the layer and is defined as

Rip - (6)

in which 8,, = 0, (1 + 0.61 x q,) and 0,, = 6, (1 + 0.61 x q, ) are the virtual potential
temperatures, respectively, at the surface and at the top of the surface layer. The q's

denote specific humidity,
The old exchange coefficients are also defined by Egs. (1) - (6) but with different

specifications of the parameters as listed below:
200 = “om
R =074 (7)
b, = 9.4,c;, = 69.56,b, = 9.4,c, - 49.80

(b) When |v,| =0, the new formulas set

1 x 109, if 0,2 0,

cm = _2_ 8 2 (evl - ev2)
15 evl ZZ/ZOM

1/2
» i B, < 0,




1 x 1075, | if 6,20,

ch - B, - 0,9 | 2
l(gzz(vl 09) , ifev2<ev1

5 .BvI ZyZog
and
Rig =1 x 108
In contrast, the old has
1 x 107300 if 0,, >0,
cm = 0.,-0 12
1 g z2 ( vl DQ , if evz < evl
7.4 0,; 2o/Z0p |
1 x 10300 if 0,206,
ch =) em
—_ if0,<0
716 7 Bu < O
and

(9)

(10)

(11)

(12)

(13)

It is remarked here that in CAPS the conductance of air for water vapor is

assumed the same as that for heat, be it expressed by exchange coefficient as here or
by dlﬂ"u51v1ty in the turbulent mixing layer. It is also noted that the present usage of
subscripts deviates from that practiced in UG-91: specifically, the numerical subscripts
1 and 2 designate the bottom, that is, the surface, and the top, respectively, of the
surface layer, while any alphabetical suffix is regarded as a part of the variable name

to which it is affixed.

When |v,| # 0, the change is threefold: a new value for R, the ratio of drag
coefficient for momentum to that for heat, the introduction of z,5, roughness length for

heat, distinct from z,,,, and a different set of values for constant parameters in the
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stability-dependent factor F's. The effect on ¢cm comes only from the third change and
appears only when the layer is unstable. With any likely value of z,5 being smaller
than that of z,,, the change in c¢m is significantly smaller than the corresponding

change in ch.

The most obvious of the changes in ch is a reduction by a factor of 0.74 due to the
larger value for R irrespective of the layer stability. The other stability-independent
reduction arises from the fact that the current conventional wisdom says zyy is
anything but equal to or greater than z,, (see, for example, Holtslag, A.A.M. and
Beljaars, A.C.M. (1988)%.

Tables 1 - 3, prepared using the ratio z,/z,, = 50, illustrate the impacts from each

factor as well as the total effect.
Table 1. (NV3),ew/NV2 Do

Zor! Zoum
0.1 0.01 0.001
(V2) new/ N2)oa 0.4658 0.3399 0.2676
Table 2. (Fy),oo/ (F)ua
Riy
Zorr! Zout -0.25 -0.50 -0.75 -1.00
0.1 0.9742 0.9437 0.9248 0.9113
0.01 0.8396 0.7761 0.7396 0.7149
0.001 0.6972 0.6057 0.5551 0.5215
Table 3. (ch),e/(ch )gg
Rig
Zou! Zons -0.25 -0.50 -0.75 -1
0.1 0.4538 0.4396 0.4308 0.4245
0.01 0.2854 0.2638 0.2514 0.2430
0.001 0.1866 0.1621 0.1485 0.1396




When |v,| = 0, little change occurs in either cm and ch in a stable layer, except
for the difference in numerical meaning of 'smallness.’ Even under unstable
stratification, cm is reduced only by a factor of 74/75, while ck is reduced by 1.06 x
o/ Zoap)-

These changes have little effect on momentum transfer under all conditions, but
reduce the transfer of both heat and water vapor between the atmosphere and the

earth, especially under unstable stratification, from that obtained with the old
specification.

2.2 Roughness Lengths Over Oceans

In UG-91, as well as in the current PL-GSM, the roughness length for momentum

is calculated as

where a = 3.0 x 10, b = 2.1 x 10°, both in the unit of sec’’m, while (u,,v,) are the
horizontal winds in m/s at the top of the surface layer, z, in meters. The roughness
length for heat or water vapor is set equal to z,,, Given the ocean surface temperature
and assuming saturation of water vapor at the surface, the exchange coefficients in the
surface layer are then evaluated according to the formulas given in Egs. (1) - (7).

It is understood that Eq. (10) is an approximation to the solution of what we may

call the Charnock equation for z,,, given by

_— ak? u 2
oM 2 2 (15)
oM

that arises from the logarithmic wind profile

u
w@) - — In = (16)
k Zon




subject to the constraint®

82y = 0 u” (17)

where g is the constant of gravity, u. the friction velocity and « = 0.0184.

We call Eq. (17) the Charnock formula and the parameter « the Charnock
constant. Many different values for ¢ have been suggested by different people,
ranging from as small as 0.011 (Smith, 1980) to as large as 0.072 (SethRaman and
Raynor, 1975).® The solutions of the Charnock equation for z,,, with different values
of the Charnock constant are presented in Figure 1, where the abscissa V represents
the wind speed s = vV(1+V?) at 40 m above the surface. The curve E identified as PL-91
corresponds to that of Eq. (1). The corresponding friction velocities are shown in
Figure 2. Closeness of C and E in both z,,, and u. in these figures speaks well of the
approximation represented by Eq. (1). We may also note that the difference in u.
between the two extreme values of the Charnock constant does not exceed 30 percent
within the speed range of investigation.

The new formulas for roughness lengths are those recommended by Miller,

Beljaars and Palmer [1992].° They are given by
2

v »
ZoMm = B1_+a1_=zsm+zrm (18)
u g
v
Zog = By " * Yo (19)
Vv
2o = Bs " * Y3 (20)

where o =0.018, B, = 0.11, B, =0.40, B;=0.62,y =1.4x 10°, y =1.3 x 10, and v is
the kinematic viscosity of the air, given the value of 1.5 x 10° m?s™. Friction velocity,

u., satisfies the logarithmic wind profile equation,

u
u@ - — In — 2% (21)
k Zsm * zrm

Substitution of Eq. (18) into Eq. (21) yields an equation that one may call the Charnock

equation for u. and reads



40 m)

(z

ZOM (m)

187

187

18t K

1877

The Charnock

Equation
e ——

///0”//“///’?

/"/v
3 o 1=
i 7 //“/‘/t:/
y s g
[ - /%/V 3
f Q/ </;/"/ E
A
S :
:/ 3 A= 0.011 E
:%/( ‘ ! B = 0.012
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2{ D = 8.872 3
C E = PL-91

20

Figure 1. Roughness Length for Momentum, z,,, as Solutions of the Charnock
Equation for Different Values of the Charnock Constant, vs the Wind Speed V
at 40 m Above Surface
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Figure 2. Friction Velocity, u. Corresponding to zy, of Fig. 1, vs the Wind
Velocity V at 40 m Above Surface
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u ln 2 = - k u

\Y u, (22)
Br— + ¢;—
u, 8
The equation is solved for u. with a given value of u at level z and the corresponding
roughness lengths are then evaluated in accordance with Egs. (18) - (20).

The three roughness lengths given by the new prescription are shown in Figures
3a and 38b. Comparisons of z, between the old and new formulas are presented in
Figures 4a and 4b. It is readily seen in these figures that the new model prescribes
different patterns of exchanges between near-calm and windy regimes over oceans,
whereas the old version prescribes only monotonic changes. It is also apparent from
Figure 5, which shows the ratios of these roughness lengths, that the new prescription
over oceans is characteristically different from the counterpart over land where z,4 =
0.01 x zy, has been suggested.

The most immediate and important effect of the changes in roughness lengths is
seen in the surface layer exchange coefficients. We express the corresponding changes

in these coefficients, under neutral stratification, by the ratio of the new to old values.

We have, for momentum

cmnew)  Ni(new)  In(z,/zy,(0ld)

omld)  N,old)  InGyzeymew) (23)
and for heat
chinew) = Np(new)  Riold) . InGyzy(0ld) — Intzy/z,,(0ld) 24)

ch(old) N,(old) R(new) In(zy/zy,(new)) In(zy/z, g(new))

where, it is recalled that R.(old) = 0.74, R (new) = 1.0, and 2z, (0ld) = 2oy (old). A
similar expression holds for the ratio of cq. Figure 6 presents these ratios with z, =
40 m. It is apparent that all three exchanges in the surface layers are smaller in the
new model than in the old except in the very low wind regime where exchanges of heat

and water vapor are much more enhanced than that for momentum.
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Roughness Lengths of ECMWF Model
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3. STRUCTURAL CHANGES

The driving force behind the structural changes arises from a new modeling of
balance of energy fluxes at surface. The old version sets up the balance among four
fluxes, namely, sensible heat, latent heat, upward radiative heat, and heat
accompanied by precipitation for given downward radiative flux and soil heat flux,
and solves for temperature and specific humidity at the surface. The solutions are next
modified step by step as heat fluxes due to phase changes of precipitation and snow
cover are taken into account. The new algorithm includes all energy transfers that are
supposed to take place at the surface in the balance equation simultaneously and
solves it for the temperature and specific humidity. As we restructure the balance
equation we find it necessary at various junctures to introduce a new formulation or
interpretation of terms representing quantities relevant to the energy balance. For
both brevity and clarity it is thought best that we present the new model in its entirety

first without reference to the old version and make comparative comments later as

necessary.

3.1 Parametric Representation of Surface Energy Fluxes

(a) Downward radiative energy flux (FD) is given by

FD-(1-¢e S-L (25)

where « stands for albedo and S and L are short- and long-wave downward radiative
fluxes, respectively. In the PL-GSM environment FD is calculated in the component

of the model where all radiative transfers are modeled and evaluated prior to calling

the boundary layer system.
(b) Sensible heat flux (H) is represented by

H-pc, CH (T, - 6,) (26)

where p is air density in the surface layer (kg/m?), ¢, is the specific heat at constant
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pressure of air (j/kg"K), CH is the exchange coefficient for heat in the surface layer
(m/s), T, is the surface air temperature (°K), and 6, is the potential temperature at the

top of the surface layer (°K).
(¢) Soil heat flux (G) is defined by

T, - Tb,
- k, ,
zb k 27
p, K

where k, and k, are, respectively, the thermal conductivities of soil and of snow. Tb,
is the temperature (°K) at the midpoint of the first soil layer of thickness zb, (m) and
esd snow depth expressed in equivalent water (m). p, and p, are densities of water and
ice, respectively. The model thus represents the effect of snow cover as equivalent to

that of an additional soil layer of depth proportional to k,/%,.

(d) Latent heat flux due to evaporation or sublimation (E) is given by

E-p L CQU, - a) (28)

where L is latent heat of evaporation (sublimation) if T,> Ty, (T, < Typ), in which T,
is the freezing point of water, taken to be 273.16 K. C@Q is the exchange coefficient for
water vapor in the surface layer (m/s) and g, and g, are specific humidities (kg/kg) at

surface and at the top of the surface layer, respectively.

(e) Upward radiative heat flux (FU) is given by
FU - o (Ts)? (29)

where o is the Stefan-Boltzman constant.

() Heat flux brought by precipitation (Wp)

Wp - ¢, (T, - T,)prep, (30)

where ¢, is specific heat of water (j/kg K), T, temperature of precipitation (°K) and

prep rate of precipitation (kg/m’ s).
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(g) Flux of latent heat released or consumed as arriving precipitation undergoes
a phase change is represented as follows:
(gl) whenT, <Ty,

(gla) if T, > Ty, then the arriving rain is frozen with release of latent

heat of fusion given by

We = L, prep, (31)

(glb) if T, < Ty, no phase change occurs and no realization of latent

heat takes place.

In both cases, there results an accumulation of precipitation at the surface and

the value of esd at the time step is changed to

esd = esd + prcp dt x 1073, (32)

(g2) when T, >T,,
(g2a) if T, > Ty, the arriving rain takes part in melting the existing
snow cover, but there is no phase transformation and no release of latent heat by the

precipitation.
(g2b) if T, < Ty, the frozen precipitation melts by consuming latent

heat of melting given by
Wc - - L, prep (33)

(h) Heat flux from melting of snow cover (Wm) is modeled as follows: when T
> T,, some of the existing snow cover melts at the expense of latent heat of melting,
L, Ifitis assumed that the temperature of the entire snow cover is constant at T,
then p, ¢, (T, - Tyy) esd is the amount of heat available per unit area for melting. The

reduced snow depth in equivalent water dz is then given by p, L;dz. Equating the

demand and supply, we then find
dz = ¢, (T, - Ty,) esd/L, (34)
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With ¢, = 2.09 x 10%j/(kg K) and L, = 3.34 x 10° j/ kg, dz/esd < I aslong as T - Ty <
160 °K. Tt is thus unlikely that any reasonable value of T, would cause dz to be greater

than esd. We assume, therefore, that when T, > T, melting of snow cover requires an

energy flux given by
Wm = p,c, (T, - T,y esd/dt (35)

where dt is the size of a unit time step, in seconds.

The balance of energy fluxes at the surface can now be written as

"FD.Wp-We-H-+G+E+FU-Wm (36)

where Wp and Wc are null when there is no precipitation and so is Wm when T',< Ty
While the surface energy given by Eq. (36) is balanced, the depth of snow cover
may change, due possibly to the following two processes:
(1) sublimation, the energy flux of which is given by E, reduces the snow depth
during the ensuing time step given by
1 Ead

dzs =
pw Lf

(2) melting occurs only when T, > T, and amounts over the time step to

¢, (T, - Tyy)esd
L, '

(38)

dzm =

3.2 Solving the Surface Energy Balance Equation

In solving Eq. (36) for surface temperature, T, and surface specific humidity, g,

the following postulates and assumptions are made:

a. The profile conditions both in the atmosphere and in the soil at the time for

which balance is sought are given.

b. The amount of the incoming radiative flux is known. Also known is the
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condition of the surface as to whether it is covered with snow or not by the given value
of esd.

c.  The type of precipitation is determined by (7, T).

d. The temperature of precipitation is set equal to the air temperature at the
top of the surface layer, T..

e. Over land, the exchange coefficient for specific humidity in the surface layer
has the same value as that for heat.

f.  Virtual temperature T, is evaluated using

T =-T(@1 -+ 061 x q), (39)

where T is air temperature ( °K) and g specific humidity.
g. All snow covers are uniform and constant in all physical properties.

h. Air density in the surface layer is evaluated according to

ps * p2
R, T, + T,»)

vs

p = (40)

where p, and p, are pressure at the surface and at the top of the surface layer,
respectively, and T, and T',, are the corresponding virtual temperatures. R, denotes
the gas constant for dry air.

i.  Inthe PL-GSM environment the lowest model-layer level identified by p,/p;
= 0.995 is regarded as the top of the surface layer.

The solution procedure takes the following three steps:

(1) solve the balance equation for potential evaporation, Ep, and the
corresponding temperature, Tp,

(2) evaluate actual evaporation E as a fraction of Ep,

(3) solve the balance equation for surface temperature T, and surface specific
humidity, g,, corresponding to the actual evaporation E.

Even armed with the aforementioned premises regarding the conditions

surrounding the surface, the surface energy balance equation as given in Eq. (36) is
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obviously not linear in T, and g, and one is presented with a number of alternative
solution methods. We have in the present study experimented with two methods, one
nonlinearly and the other by linearizing the balance equation, both of which employ
iterations to satisfy prescribed threshold criteria. In the nonlinear solution, the
Newton-Raphson algorithm is modified slightly to reduce the number of iterations
required for meeting the criterion that the magnitude of imbalance be less than a
specified value. The solution method for the linearized version is presented below to
help tracing the codes of the subroutine executing the solution procedure.

Our first step is to solve Eq. (36) for potential evaporation Ep and the

corresponding temperature Tp such that
T, -Tp, Ep -9 LCQ (@°(Tp.p,) - q,) (41)

where q*(Tp,p,) denotes the saturation specific humidity at temperature Tp and
pressure p,. This is accomplished by linearizing two energy fluxes FU and Ep at T,

as follows:
FU - o (T,)* + 40 (T,)® (Tp-T,), (42)
Ep - p L,CH (%,) Tp - Tp) - p L,CQ @(Typ,) - a). (43)

in which the approximation q = € - e/p is invoked, where e and p are vapor and air
pressure, respectively, and ¢ the ratio of atomic weights water vapor and air. All
other fluxes are linear in Tp, if one ignores the dependence of various coefficients such

as p, CH and k,on Tp. The resulting system of equations for Ep and (Tp - T))) can be

written as
Ep - A1 (Ip - T,) = BI, (44a)
Ep + A2 (Tp - T,) = B2, (44Db)

where
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k
Al -p c, CH .40 (Ty)" . «e,prep +dy pSCs%d—
t

|zb | Puko
+esd
2 Pk, (45)

A2x-pLUCH(—C-iiJ :
TZ

and
4 kg
EX Py ko
2 p. k
esd T (46)
+dg prrcp +dyp,c, -:it_ (Ty-Ty)
B2--p L, CH (¢°(Top,)-q3)
in which
1 if To > Top,
d1 = . (47)
0 if Tp < Ty,
and
1 if Tp, < Ty,
2 ‘00 (48)

dy .
-1 if Tp, > T,

When there is snow cover at the surface, that is, esd # 0, evaporation is assumed
to take place at the potential rate so that (Tp, Ep) defines the surface condition and
individual energy fluxes are evaluated in accordance with the expressions given in the
previous section.

When there is no snow cover at the surface, the actual rate of evaporation is
evaluated next. In current practice, actual evaporation is made up of three
components, namely, direct evaporation from bare soil, transpiration from vegetation,
and evaporation from the canopy top. Each of these components is represented

parametrically as a non-negative fraction of potential evaporation. With the total
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actual rate of evaporation E given as the sum of the components, the surface energy

balance equation, Eq. (44a,b) is recast as
E + A1 (Tg - T,) - Bl (49)

to yield the value of surface temperature 7,. The value of surface specific humidity gg

is then computed using

_E _
p - CH

The iteration starts with an arbitrary set of initial guesses and ends when

g, = 49 + (50)

magnitudes of individual energy fluxes as well as their imbalance between successive

steps all become less than a prescribed tolerance limit.
3.3 Monteith's Psychrometer Constant

Monteith!* introduced an equation that reads
e, T,)-e=-y (T-T,) (51)

which he credits to Brunt (1939)* and calls y the 'psychrometer constant'. Here, e, (T,)
is the saturation vapor pressure at temperature T, and e and T are the water-vapor
pressure and temperature of the air. We wish to determine the expression for y and
examine to what extent it can be regarded as a constant by starting from Brunt's

original wet-bulb temperature equation. It is given by
€, + cw)(T-T,) - Lw'- w) (52)

where c, and c,' are the specific heats at constant pressure of dry air and water vapor,
respectively, w and T are the mixing ratio and temperature of the approaching air,
while w' and T, are those of the air leaving the wet-bulb thermometer. Treating both

dry air and water vapor as perfect gases, we find

.8 . (53)
P 78 p
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where £ = 0.622 is the ratio of the molecular weight of water to that of air. Converting

mixing ratios to water-vapor pressures using

ge f 8e.s(T,w)
w = , W = ————— (54)

p-e p-e (T,)

we obtain from Eq. (52) the following expression for y:

1.1 e
- CpP 7p - % F
YL eT.) eI, (55)
p-e, (T,)

in which the second quotient, F, is seen to depend on p, e and e(7,) and may be readily
shown to be always less than 1 but greater than 1 - /e (T,)/p]. The fractional excess
error by regarding y constant is, therefore, less than 5 percent of its true value even

under extremely humid conditions typical of the tropics and much less in more common

situations.
On the other hand, the mixing ratio in the atmosphere is often approximated by
w=¢ — (56)
If we use such an approximation in Eq. (52) we obtain
' eL
c, + & = e)T-T,) - — [eT,) - € (57)
D D
and the psychrometer constant y becomes

&P 1 8
Y eL( Te

v

w) (58)

which shows the second quotient always greater than unity, in contradiction to what
was found in Eq. (55). Thus, when the approximation Eq. (56) is adopted, the
fractional deficit error of w is (e/p) and, according to Eq. (58), the fractional error in

v by regarding it constant is also negative and slightly greater in magnitude than w.
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We think it better to use Eq. (58) for the expression of y in the GSM environment.

3.4 Definition of Plant Coefficient

Mahrt et al.® state that "the plant coefficient is formally defined here as the ratio
of transpiration to the potential evaporation for the case of insignificant soil water
deficit,” and proceed to model transpiration, which is one of three components of actual
evaporation, in terms of plant coefficient and other parameters at gridpoints over land.
Plant coefficient in UG-91, on the other hand, is represented as a quantity that results
from surface energy balance at a given time and a given location where evaporation
incorporates the effect of plant resistance to evaporation.

We wish to define plant coefficient very much in the spirit of the first part of the
Mahrt's phrase quoted above, but in a more explicit fashion that reflects intrinsic
characteristics of the physiology of plants in question. We think such a definition is
plausible when we interpret what Monteith'* regards as the evaporation from a dry
leaf surface, (L E),,, as transpiration, while calling the evaporation from a wet surface,
(L,E),., the potential evaporation as Penman'® did. According to Monteith, then, plant

coefficient, pc, is defined by

_(‘Ev)dr_y= A+Y (59)

By A+ Y

pc

where A =(de/dT), y is the psychrometer constant defined in the previous paragraph,
and y' =y (1 +r," cq), where r, is a parameter in units of s/m representing the plant

resistance to evaporation and cq the exchange coefficient for water vapor of the

surrounding air.
3.5 Types of Precipitation at the Surface

The model employs two integer indices, flgsnl and flgsn2, to classify the type of

precipitation as it arrives at the surface. A new method of classification which is
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mutually exclusive and collectively exhauétive replaces those employed in UG-91 and.
PL-91. Denoting the temperature of precipitation by tp and temperatures of air at the
top and bottom of the surface layer by t2 and t1, respectively, all expressed in °C, the

three different classifications are summarized in Table 4.

Table 4. The Old and New Classifications of Precipitation at the Surface.

tp: temperature (°C) of the precipitation,
t1l: air temperature (°C) at the surface,
t2: air temperature (°C) at the top of the surface layer.

freezing rain

ice pellets

tp> 0 flgsnl =0
t1<0flgsn2=1

tp<0flgsnl=1

tp > 0 flgsnl =0
t2<0flgsn2=1

tp<Oflgsnl=1
t2>0flgsn2=1

tp<Oflgsnl=1
t2 <0flgsn2=1

UG-91 PL-91 New
variables (tp,t1) (tp,t2) (tp,t1)
tp> 0 flgsnl1 =0 tp>0flgsnl=0 tp>0flgsnl1 =0
rain t1>0flgsn2=0 t2>0flgsn2=0 t1>0flgsn2=0

tp>0flgsnl=0
t1<0flgsn2=1

tp< 0 flgsnl =0
tl1 >0 flgsn2 =20

tp<Oflgsnl=1
tl1 <0flgsn2=1

SNOw t1<0flgsnl1=0

It is noted here that our current practice takes tp to be the same as t2, as UG-91 does,
while PL-91 chose tp to be the air temperature at the model-layer level closest to 850
hPa. The choice of variables has been predicated on the assumption that falling
precipitation attains thermodynamic equilibrium with everything else at the surface.
It is, therefore, also implicit in the new classification that freezing rain accompanies
release of heat of fusion, while ice pellets require consumption of heat of melting,

either of which, whenever it occurs, is accounted for as We in the surface energy

balance.
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3.6 Boundary Conditions for the Evolution of Soil Temperature

The model prescribes the evolution of soil temperature by the classical heat

conduction equation,

Ty | 2 4, Ty

ot o8z oz
where T}, is the soil temperature, ¢ time, and z depth below surface, assigned negative.

(60)

Heat capacity C, and thermal conductivity %24, are regarded as functions of soil water
content. The equation is solved using centered finite differencing in the vertical and
the backward Crank-Nicholson scheme in time; in which, however, the values of
parameters C and k; are held the same between the two time steps during time
integration.

Three modifications of the procedure given in UG-91 are introduced in the new
model for physical reasons given below.

Firstly, as described in Section 3.2, the new model replaces snow cover by an
equivalent thickness of soil whose thermal properties are those of the top soil layer.

Thus, the depth of the bottom of the first soil layer becomes

2(1) = zsoil(l) - z(esd) (61)
where
kA1
2(esd) - D) Pu esd (62)

in which k, is the thermal conductivity of snow, and p, and p, are the densities of
water and snow, respectively.

Secondly, in the PL-GSM land surface specification scheme, the soil temperature
at z = -2 m is regarded as a constant with time that varies geographically according to
annual climatology. The soil temperature in the second layer (-1.00m < z < -0.05m) is,
therefore, affected not only by the heat flux at the upper boundary but also by that at

the lower boundary surface which varies in time due to the change of the temperature
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in the layer.
Finally, an analysis of the codes in UG-91 reveals that in setting the boundary

condition at the surface required for stepping forward in time, an assumption

regarding temperature changes at the surface is made of the form,

.1 2z" .l
T - T - —=— Ty - Ty (63)
1+22"
in which T, and T,, are the temperatures at the surface and in the first soil layer,

respectively, the superscript denotes the time step referred to, and

k
2z" - T . (64)
pc,ch+40T,

Since zz® > 0 for all n, Eq. (63) implies that the temperature change at the surface is
smaller than the corresponding change in the first soil layer at all times. We do not
consider this realistic. In its place, we propose a tentative assumption for time

integration of soil temperature that holds

Gn.l - Gn (65)

that is, the ground-heat flux at the surface remains the same as the flux that results
from surface energy balance at the start of the time interval. It is used only to update
the soil temperature, whose change is generally much smaller than that of the surface
temperature, to the next time step where the surface temperature and the
corresponding ground-heat flux are calculated afresh as solutions of the surface energy

balance under the new set of profile conditions.

4. EXPERIMENTS

We have chosen a region (shown in Figure 7) in the southern United States east
of the Rockies between 28° and 38° N for a preliminary study in which we attempt to

gauge the immediate impacts of formal and structural changes described in the
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preceding sections on model outputs at the surface over land. In an earlier study with
PL-GSM that used the FGGE-IIIb data we saved all outputs at each of the model
gridpoints (marked by © in Figure 7) in the region that are considered relevant to the
boundary layer system on every time step (20 min.) in the period between Jan 12 12
UTC and Jan 15 12 UTC of 1979. These outputs provide the profile conditions and
other synoptic information at a given time required for evaluating surface variables
and their influences on subsequent changes in the profile conditions. Also shown in
Figure 7 are the three integer indices to each model gridpoint, representing the types
of soil, vegetation, and cultivation of the area represented by the gridpoint. For
presentation of the results of the experiments, we have named the model gridpoints
by a pair of integer indices (i, j), in which i designates the west-to-east coordinate,
starting with 1 at 105 W and ending with 9 at 75 W, and j represents the north-to-
south coordinate, beginning with 1 slightly north of 36 N and ending with 4 just north
of 29 N (see Figure 7).

A series of daily 7 a.m. EST (12 UTC) surface weather maps published by NOAA,
shown in Figure 8, illustrates the weather over the United States during the period of
study. It shows that a passing of two successive low-pressure centers and fronts
brought much clouds and precipitation over most of the region. The simulation by the
PL-GSM produced precipitation at all gridpoints east of 98°W every day in the form
of heavy rainfall from late on the 12th to the afternoon of the 14th in the area east of
90°W. The radiation scheme in the model produced daily maximum downward
radiative fluxes ranging from 600 to 910 w/m? in the region during this period.

In the present study we limited our scope to static tests where we were interested
only in the outputs at the surface as the result of surface energy balance rather than
in the dynamic impacts on the evolution of the entire GSM. We also limited our
comparisons only to land gridpoints, since only 8 of the 36 gridpoints in the region are
over oceans.

We have looked into two changes in form; surface-layer exchange coefficient and
plant coefficient, and two changes in structure; composition in surface energy balance

and solution algorithm for surface energy balance. A typical test was carried out on
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a 2 x 2 matrix of compatible models with two different attributes in which each
attribute has the old and new versions. Employing parallel pairs allows us to gauge
the sensitivity of the impacts to changes in the background.

We have found temperature, humidity and fluxes of sensible heat, ground heat
and latent heat of evaporation to be the most telling among all the surface variables
of differences between any pair of comparable models. We employ, therefore,

differences in these variables to describe impacts of the changes imposed.

4.1 Plant Coefficient

Impacts from the change in evaluating plant coefficients were examined using the
old structure. Tables 5 and 6 present examples of the contrasts in output at two
different times of day, early morning and early afternoon, between the old and new
plant coefficients when the model uses the old exchange-coefficient formulas. Tables
7 and 8 do the same for the model with the new exchange coefficients.

We note, first of all, that regardless of time and location and irrespective of
exchange coefficients, the new value is larger than the old. The excesses in fraction
of a few percentage points with the old exchange coefficients are smaller than those of
mostly several percentage points with the new. We see, however, hardly any difference
in either temperature or specific humidity due to the increased values of plant
coefficient with either exchange coefficient. Differences found in these examples are
no more than a hundredth of 1°K in temperature and a hundredth of 1 g/kg in
humidity.

The impacts are more noticeable in the surface fluxes, but their magnitudes are
still of no significance. The largest difference among all the three fluxes in the tables
is 2.20 w/m® which is 1.5 percent of the flux value, and most of the flux differences are

much smaller fractions of the corresponding flux values.
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Table 5. A Comparison of Surface Outputs Between the Old (UG-91) and New Plant-coefficient
Formulations With the Old Exchange Coefficients at Timestep = 1.

gridpoints
1,1 2,1 3,1 4,1) (5,1) 6,1) 7,1) 8,1)
1. Plant coefficient
old 0.0363 0.1796 0.0610 0.0388 0.0706 0.0735 0.0531 0.0556
new  0.0370 0.1915 0.0619 0.0390 0.0716 0.0747 0.0536 0.0561

2. Surface temperature (T - 200 in K)

old 74.94 74.73 74.14 72.31 73.09 74.22 73.08 74.14

new  74.94 74.73 74.14 72.31 73.09 74.22 73.08 74.14
3. Surface specific humidity (g/kg)

old 4.55 4.60 4.12 3.02 3.56 3.86 3.51 3.76

new 4.55 4.60 4.12 3.02 3.56 3.86 3.51 3.76

4. Sensible heat flux (w/m*m)
old -204.35 -97.62 -40.68 368.93 129.34 60.14 161.34 200.01
new -204.39 -97.63 -40.68a 368.92 129.31 60.10 161.30 199.97

5. Ground heat flux (w/m*m)

old 19.78 1.61 -48.60 -429.70 -350.91 -314.88 -393.50 -348.19
new 19.75 1.60 -48.60 -429.70 -350.94 -314.94 -393.53 -348.22
6. Latent heat flux of evaporation (w/m*m)
old 105.39 18.01 55.73 35.86 173.73 201.57 249.18 160.27
new 105.47 18.03 55.74 35.86 173.80 201.66 249.26 160.34
gridpoints
1,3) 2,3) 3,3) 4,3) (5,3) 6,3) (7,3) (8,3)

1. Plant coefficient
old 0.0530 0.1018 0.0751 0.0621 0.0485 0.0451 0.0442
new  0.0545 .1060 0.0764 0.0628 0.0489 0.0454 0.0444

2. Surface temperature (T - 200 in K)

old 82.03 80.86 78.12 76.64 79.09 82.57 84.84

new 82.03 80.85 78.12 76.64 79.09 82.57 84.84
3. Surface specific humidity (g/kg)

old 4.66 6.33 5.41 4.14 5.32 7.34 8.56

new 4.66 6.33 5.41 4.14 5.32 7.34 8.56
4. Sensible heat flux (w/m*m)

old -166.43 -171.85 25.19 314.96 145.79 79.35 241.11

new -166.46 -171.88 25.18 314.88 145.75 79.35 241.11
5. Ground heat flux (w/m*m)

old 30.12 -6.52 -162.30 -573.18 -436.35 -140.22 -14.65

new 30.12 -6.53 -162.30 -573.25 -436.38 -140.22 -14.65
6. Latent heat flux of evaporation (w/m*m)

old 30.02 78.13 95.13 223.64 313.69 66.48 -224.09

new 30.06 78.17 95.15 223.79 313.76 66.49 -224.09
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Table 6. A Comparison of Surface Outputs Between the Old (UG-91) and New Plant-coefficient
Formulations With the Old Exchange Coefficients at Timestep = 19.

gridpoints
1,1 2,1 3,1 4,1) 5,1) 6,1) (7,1) 8,1)
1. Plant coefficient
old 0.0413 0.0668 0.0635 0.0679 0.0774 0.0806 0.0860 0.0754
new 0.0421 0.0683 0.0645 0.0689 0.0788 0.0821 0.0877 0.0766

2. Surface temperature (T - 200 in K)
old 77.83 79.88 78.21 77.28 79.97 81.01 78.79 79.22

new 77.83 79.88 78.21 77.28 79.97 81.01 78.79 79.22

3. Surface specific humidity (g/kg)
old 5.48 5.66 4.92 4.50 5.57 6.14 5.61 5.77

new 5.48 5.66 4.92 4.50 5.57 6.14 5.62 5.77

4. Sensible heat flux (w/m*m)
old 174.47 112.59 132.76 183.01 152.79 145.30 128.37 113.83

new 17441 112.56 132.75 182.96 152.74 145.26 128.35 113.82

5. Ground heat flux (w/m*m)
old 74.42 37.20 -18.95 -2.11 16.07 26.27 -12.61 -10.80

new 74.38 37.19 -18.96 -2.15 16.03 26.24 -12.63 -10.81

6. Latent heat flux of evaporation (w/m*m)
old 112.54 201.41 243.60 181.08 188.11 180.16 140.71 151.13
new 112.54 201.44 243.63 181.17 188.20 180.24 140.76 151.16

gridpoints
1,3) 2,3) (3,3) (4,3) (5,3) 6,3 (7,3) (8,3)

1. Plant coefficient

old 0.0549 0.0707 0.0746 0.0899 0.0703 0.0596 0.0682

new 0.0565 0.0726 0.0759 0.0915 0.0712 0.0604 0.0697
2. Surface temperature (T - 200 in K)

old 86.04 85.98 83.61 83.16 85.30 86.61 87.29

new 86.04 85.98 83.61 83.16 85.30 86.61 87.29
3. Surface specific humidity (g/kg)

old 4.59 6.17 6.88 6.42 7.92 9.58 10.07

new 4.59 6.17 6.88 6.42 7.92 9.58 10.07
4. Sensible heat flux (w/m*m)

old 264.36 158.60 187.05 265.34 280.76 200.70 102.70

new 264.31 158.55 187.02 265.24 280.70 200.70 102.70
5. Ground heat flux (w/m*m)

old 60.81 43.75 -15.13 27.69 32.68 32.50 2.32

new 60.80 43.73 -15.15 27.60 32.64 32.50 2.32
6. Latent heat flux of evaporation (w/m*m)

old 30.77 153.67 299.63 180.86 222.59 293.38 154.34

new 30.83 153.74 299.69 181.04 222.70 293.38 154.34
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Table 7. A Comparison of Surface Outputs Between the Old (UG-91) and New Plant-coefficient
Formulations With the New Exchange Coefficients at Timestep = 1.

gridpoints
(1,1 2,1) 3,1 4,1 5,1) 6,1) (7,1) 8,1
1. Plant coefficient
old 0.0894 0.3446 0.1486 0.1421 0.2980 0.2431 0.1725 0.1846
new  0.0941 0.3864 0.1542 0.1461 0.3169 0.2570 0.1792 0.1917

2. Surface temperature (T - 200 in K)
old 74.52 73.93 74.25 74.21 74.27 75.05 74.30 75.30

new  74.52 73.93 74.25 74.21 74.27 75.05 74.30 75.30

3. Surface specific humidity (g/kg)
old 4.44 3.86 4.12 3.05 - 5,72 5.25 4.71 4.72
new 4.44 3.86 412 3.05 5.74 5.26 4.71 4.73

4. Sensible heat flux (w/m*m)
old -92.19 -44.82 -10.64 168.10 39.81 31.74 82.83 89.00

new -92.24 -44.89 -10.65 168.10 39.72 31.65 82.71 88.86

5. Ground heat flux (w/m*m)
old -12.45 -17.24 -43.60 -213.54 -204.76 -209.50 -235.50 -202.99

new -12.54 -17.24 -43.60 -213.56 -205.36 -209.97 -235.91 -203.43

6. Latent heat flux of evaporation (w/m*m)

old 27.50 -12.06 20.21 12.05 111.74 120.75 164.15 120.80
new  27.64 -12.06 20.22 12.08 12.46 21.34 164.69 121.39
gridpoints
1,3 2,3 (3,3 4,3) (5,3) (6,3 (7,3) (8,3

1. Plant coefficient
old 0.1217 0.2186 0.1981 0.2203 0.1398 0.1231 0.1220
new 0.1303 0.2393 0.2087 0.2302 0.1444 0.1267 0.1250

2. Surface temperature (T - 200 in K)

old 80.22 80.20 78.78 78.50 80.08 82.85 84.87

new  80.22 80.20 78.77 78.49 80.07 82.85 84.87
3. Surface specific humidity (g/kg)

old 4.87 5.88 5.83 6.01 6.34 7.64 8.61

new 4.87 5.88 5.83 6.03 6.34 7.64 8.61

4. Sensible heat flux (w/m*m)
old -126.52 -78.67 27.20 124.89 95.59 43.69 80.45
new -126.55 -78.67 27.16 124.57 95.43 43.65 80.45

5. Ground heat flux (w/m*m)

old 0.10 -23.90 -133.28 -354.45 -304.47 -109.20 -13.32

new 0.08 -23.91 -133.33 -355.57 -304.82 -109.25 -13.32
6. Latent heat flux of evaporation (w/m*m)

old 29.47 5.71 60.97 186.33 227.23 69.73 -64.90

new  29.53 5.73 61.06 187.83 227.76 69.82 -64.90
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Table 8. A Comparison of Surface Outputs Between the Old (UG-91) and New Plant-coefficient
Formulations With the New Exchange Coefficients at Timestep = 19.

gridpoints
(1,1 (2,1 (3,1 4,1) 5,1 6,1) (7,1 8,1
1. Plant coefficient
old 0.1124 0.2242 0.1931 0.2101 0.2587 0.2702 0.3072 0.2197
new 0.1197 0.2429 0.2033 0.2204 0.2759 0.2897 0.3311 0.2315

2. Surface temperature (T - 200 in K)
old 79.39 83.66 80.74 78.98 81.74 82.79 80.35 80.29

new 79.39 83.65 80.74 78.98 81.73 82.79 80.35 80.29

3. Surface specific humidity (g/kg)

old 6.06 6.87 5.89 5.57 7.16 7.79 7.39 6.73

new 6.07 6.87 5.89 5.58 7.17 7.80 7.40 6.73
4. Sensible heat flux (w/m*m)

old 100.96 101.24 111.31 96.88 72.99 69.11 51.14 63.48

new 100.79 101.15 111.25 96.73 72.83 68.96 51.06 63.41

5. Ground heat flux (w/m*m)
old 175.11 125.38 96.48 132.78 146.88 148.40 96.25 71.70

new 174.72 125.29 96.38 132.36 146.34 147.91 95.89 71.52

6. Latent heat flux of evaporation (w/m*m)
old 77.87 106.16 137.50 124.27 128.50 125.43 101.46 113.62
new 78.47 106.36 137.67 124.86 129.25 126.09 101.92 113.87

gridpoints
1,3) (2,3) 3,3) 4,3) 5,3) 6,3) (7,3) (8,3)
1. Plant coefficient
old 0.1742 0.2676 0.2863 0.3460 0.2164 0.1647 0.1769
new 0.1921 0.2988 0.3100 0.3733 0.2282 0.1737 0.1902

2. Surface temperature (T - 200 in K)

old 90.67 89.72 87.92 85.71 87.32 87.66 87.85

new 90.66 89.71 87.91 85.68 87.31 87.66 87.85
3. Surface specific humidity (g/kg)

old 5.05 8.20 9.30 9.06 9.57 11.12 10.85

new 5.06 8.21 9.31 9.11 9.58 11.12 10.85
4. Sensible heat flux (W/m*m)

old 163.95 88.04 117.68 88.54 141.02 112.07 60.46

new 163.79 87.89 117.51 88.17 140.70 112.07 60.46
5. Ground heat flux (w/m*m)

old 136.68 140.73 160.73 229.59 188.77 132.95 48.84

new 136.55 140.48 160.38 227.86 188.03 132.95 48.84

6. Latent heat flux of evaporation (w/m*m)
old 31.73 107.95 171.42 142.98 195.90 274.61 144.88
new  32.05 108.40 171.97 145.18 197.02 274.61 144.88
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These results led us to conclude that the difference in the definition of plant
coefficient would not produce any significant changes in values of surface variables to

affect the rest of the model.
4.2 Exchange-Coefficient Formulas and Energy-Balance Algorithm

Impacts of the change in the formulas for surface-layer exchange coefficients and
of the change in the procedure seeking the balance of surface energy fluxes are
examined with the use of a 2-by-2 matrix of the following four models schematically

depicted in Table 9.

Table 9. Schematic Diagram of Impact Evaluation.

(formulas)
old new
old Al A2
(algorithm)
new B1 B2

As we started looking into details of surface outputs from these models, we soon
became alarmed by occasional appearances of incredibly large magnitudes of ground
heat flux in models Al and A2, but not in models B1 and B2. The anatomy of
intermediate and final outputs revealed that such occurrences were invariably
accompanied by the concurrence of two external conditions: the temperature at the
lowest model-layer level, T,, is lower than the freezing point of water, Ty, and the rate
of precipitation, prcp, is nonzero. It is recalled that our model assumes the
temperature of precipitation as it arrives at the surface to be equal to T,. This fact and
also the corresponding values of other surface parameters such as surface temperature
and evaporative latent-heat flux led us to identify a particular segment in the old
algorithm as the direct culprit of the phenomenon. The segment recalculates surface

temperature and ground heat flux when it is judged that the surface is covered with
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snow. We thus came to conclude that the old algorithm cannot adequately take
account of surface conditions in accordance with the model premises when the
conditions described above, namely, T, < T, and prcp > 0, occurs. Consequently,
further comparisons among the models exclude all the gridpoints in the region that
produced at any time step during the three days of the study an obviously incredible
value of ground heat flux and a large value of imbalance.

We perceived either change depicted in Table 9 to be a minor modification to the
entire framework of specifying the surface layer and, therefore, thought that we might
regard each change as a perturbation and subject its impact on the surface parameters
to a linear analysis. The pairwise comparisons afforded by the matrix can determine
the extent to which such supposition may be valid. Such an approach might then
enable us to discover certain general characteristics in the impact that are independent
of differences in the other attribute and/or other influences such as synoptic or soil
conditions.

Tables 10-13 present three statistics: mean, standard deviation of, and correlation
between the models, on the daily basis (12 UTC-12 UTC) in four surface variables,
namely temperature (°C), specific humidity (g/kg), sensible heat flux and evaporative
latent heat flux (w/m*m), at four gridpoints: (2,2) (2,4), (7,2) and (7,4). The four
gridpoints together cover well not only the spreads of geographical and weather
conditions but also those of soil and vegetation of the region (see Figure 7). Part ain
each of the tables gives the statistics of the variables themselves while part b those of
differences between models of the individual variables.

We find, first of all, from part a that the daily statistics generally exhibit good
parallelism between models across the changes. In temperature, t1, and sensible heat
flux, H, correlations are uniformly very high between any pair among all four models
at all gridpoints; supporting the notion that effects of the changes can be regarded as
perturbations. In specific humidity, q1, and evaporative latent heat flux, E, however,
the pair of gridpoints in the west: (2,2) and (2,4) presents significantly lower
correlation than those in the east where the relations are as good as those found in

temperature and sensible heat flux.
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Another noteworthy feature found in part a is the difference between t1 and q1
on one hand and H and E on the other of diurnal variations of the individual variables.
In other words, it shows that the diurnal ranges of H and E relative to their respective
daily means are much greater than those of t1 and ql. It signifies the fact that the
thermodynamic state of the surface as represented by t1 and ql is kept relatively
stable by a balance of energy fluxes of large fluctuations.

The statistics of four differences among the models in part b measure degrees of
coherence in the impacts of a change in one attribute between the old and new versions
of the other attribute. As expected, good correlation in the differences are found, when
it exists, only between the related pairs, for example, between D1: the difference in
output between Al and B1, and D4: between A2 and B2. It is also quite obvious that
there is little uniformity in the statistics of differences of effects of changes among the
four gridpoints; suggesting that effects of the changés are very much dependent on
circumstances. The figures in these tables make obvious the futility of any effort to
find some quantitative statistical relationship between the model changes and their
impacts on surface parameters that is independent of either time and space. Yet, there
are some features that cannot help but draw our attention; for example, the strong
similarity in the pattern of statistics of D3 and D4 for not only t1 and q1 but also H
and E between two grid points in the west and, an equally strong similarity but
different in pattern, of the statistics in D1 and D2 for t1 and q1.

A further comparison is made directly with time series of the surface parameters
put side by side from a pair of comparable models, such as those shown in Figures 9-
12. Each frame in any figure of the group contains time series of a surface variable
from a pair of the models, A1, A2, B1, and B2 at one of the four gridpoints, (2,2), (2,4),
(7,2), and (7,4), during Jan 12, 12 UTC to Jan 15, 12 UTC of 1979.

Figures 9 and 10 illustrate the impacts on surface temperature and on sensible
heat flux, respectively, of the change in form, that is, exchange-coefficient formulas,
and Figures 11 and 12 the impacts on the same variables by the change in algorithm
for surface-energy balance. Part A in each is in the west: at gridpoints (2,2) and (2,4)
and part B is in the east: at gridpoints (7,2) and (7,4).
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The analysis of the surface-layer exchange-coefficient formulas presented earlier
(Section 2.1) showed that, when everything else remains the same, the change in
formulas from old to new reduces the rates of exchange of heat and moisture between
the earth and the atmosphere. We may take a first guess at the subsequent effect on
surface parameters by considering the equation for surface energy balance with
neither precipitation nor snow cover. It is given by (see Eq. (36)),

FD=H+E+G+FU.

With the downward radiative flux, FD > 0 always, a reduced sum of H and E requires
an increased sum of G, ground heat flux, and FU, upward radiative flux; which is
realized by a surface temperature that is warmer by day and colder at night. Such a
deduction is qualitative and an approximation to the extent that it presumes no
reversal in any of the gradients within the immediate layers surrounding the surface.
Quantitative relationships between temperature or specific humidity at the surface
and surface fluxes depend upon other factors such as wind speed, thermal and
moisture gradients and thermal stability in the surface layer.

Figures 9 and 10 together provide a good example of the scenario described above,
particularly in part A where diurnal variations of both the temperature and the flux
and the relation between the temperature and the flux are both well defined. The
same is found in most of part B, though more muted, except on the third day (timestep
beyond 144) at gridpoint (7,2) in daytime when both algorithms show changes in
thermal gradient between the old and new formulas.

We also note in these figures that while the difference in algorithm appears to
affect the impacts on the temperature only slightly, there are more differences in the
impacts on the sensible heat flux, especially in the west and in the third night at
gridpoint (7,4). It is also apparent that the temperature-flux relationship depends
much on ancillary conditions as well as on the model structure.

Time-series plots such as Figures 9-12 not only provide new information not
present in summary statistics such as those of Tables 10-13, but also furnish new
insights into them: for example, that the daily means are often small differences of two

large but opposite quantities and that the daily standard deviation tells more of model
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characteristics than the corresponding daily mean of a parameter. They also point out
a subtle difference in the statistics of differences between the temperature and the
flux. In temperature, the differences are opposite in sign between day and night, while
in flux, they are mostly of one sign both day and night.

The two moisture-related parameters, surface specific humidity, q1, and
evaporative latent heat flux, E, exhibit (not shown) diurnal cycles similar to those for
temperature and sensitive heat flux, but with some variations in the differences of
impacts between the models and between gridpoints in the west and those in the east.
These variations may be most likely ascribed to the intrinsic differences between
thermal and hydrological distributions in the environment. For instance, rarely were
there timesteps at which q1 was lower than the specific humidity at the level above in
all gridpoints; E was thus almost always nonnegative and even when E was negative,
its magnitude turned out to be very small. The new formulas reduce E and increase
q1l with a few exceptions at night when the differences are small, more in daytime than
at night and more in the east than west.

The third of the surface fluxes, ground heat flux, G, directs away or toward the
surface as the thermal gradient in the top soil layer points down or up in the vertical.
Thus, it too has a typical diurnal cycle in which the flux changes direction; positive
(downward) by day and negative (upward) by night, as H does. In most cases,
however, unlike H, the new formulas of exchange coefficient produced greater
magnitudes both day and night irrespective of algorithm and location. Naturally, as
in the other fluxes, the coherence in the differences due to the change in formulas
between the two algorithms varies from day to day and from gridpoint to gridpoint, as
indicated by the values of correlation coefficient between D1 and D2 in part b of Tables
6-9.

We next turn to Figures 11 and 12, which present the impacts from the change
in algorithm. We noted earlier that the new algorithm appeared to produce reasonable
values in all surface parameters in cases of precipitation on snow-covered surfaces
where the old algorithm clearly failed. Other than that, unlike the change in formulas

of exchange-coefficient, we had little indication of what to expect from installing the
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collection of changes described in Section 3.

We now find in these figures that the new algorithm increases both surface
temperature and sensible heat flux in the west both day and night, regardless of the
formula for exchange coefficient, but causes little change in the east except for the
third day at gridpoint (7,4). This pattern of contrast in the impacts between the west
and east~1 K in t1 and 50 w/m*m in H in the west and one-tenth of that or less in the
east--is even well-reflected in the daily statistics of differences, D3 and D4. Similar
contrasts are also found in ql, E and G, though not as stark as those of t1 or H.
Having found no obvious cause of the contrast in the synoptic data directly available,
we think it to be the result of a happenstance in the east where the surface
temperatures in the two algorithms turned out not only to be close to each other, but
also close to the temperature above.

With regard to differences in flux due to the change in algorithm, G is biased the
same way as H, that is, the new algorithm increases it at all times. q1 and E, however,
exhibit the opposite biases to those of t1 and H, respectively. The new algorithm
produces far less, but still positive, evaporative latent heat flux, accompanied by lower
specific humidity than the old at all times. These t1-H and q1-E relationships found
in differences of impact are opposite to those found with the change in formulas. The
apparent contradiction, however, is not really a contradiction but rather to be expected
on account of the difference in cause. Earlier, with the change in formulas, the
immediate culprit in changing the flux values was the exchange coefficient, but now
with the change in algorithm it is the surface temperature or specific humidity that
affects the corresponding flux value. Thus, in estimating the impact on fluxes of the
change in algorithm, the first approximation should be made based on Eqs. (26)-(28).

We have demonstrated that although both the change in formulas and the change
in algorithm are minor perturbations and their impacts can often be accounted for by
linear approximations, magnitudes of the impact can be significant even on a daily
basis. The regression relations are highly dependent upon ancillary conditions of
environment and model structure. In the limited cases of samples we studied, we have

seen that the new formulas of surface-layer exchange coefficient produce larger diurnal
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amplitudes in surface temperature and humidity, but smaller fluxes of sensible heat
and latent heat of evaporation. The magnitudes of change, however, vary from day to
day and from gridpoint to gridpoint and with the change in algorithm. Similar
variabilities are found also in the impact of the change in algorithm of seeking surface-
energy balance where the new algorithm is seen to increase both surface temperature
and sensible heat flux while decreasing humidity and evaporative latent heat flux.

We present Figure 13 for sensible-heat flux and Figure 14 for evaporative latent
heat flux to illustrate the impacts on the atmosphere of introducing both changes in
the GSM. With reference to these and other figures not shown here, as well as the
tables of statistics such as Tables 10-13, we may qualitatively summarize the impacts
of including both changes on the surface variables as follows:

Surface temperature rises and specific humidity decreases with the combined
effect of reducing the surface relative humidity. Sensible heat flux increases and
evaporative latent heat flux decreases, with both fluxes having smaller amplitudes in
their diurnal cycles. The differences due to the changes are greater with larger diurnal
variations in synoptic conditions. Measured by daily averages, the changes in surface
temperature and specific humidity are small but changes in the fluxes are generally

significantly large in comparison with their absolute values.
4.3 Methods of Solving Energy-Balance Equations

Effects on surface outputs by the method chosen for solving the equations of
surface energy balance are examined by comparing values of individual fluxes at the
surface among three methods:

(1) solving the linearized equations without iteration,

(2) solving the linearized equations with iteration to account for adjustments in
the parameters that depend on the surface variables, and,

(38) solving the nonlinear balance equations with iteration.

In method (2), iteration ends when none of four fluxes, namely, sensible heat (H),

ground heat (G), evaporative latent heat (E) and upward radiative heat (FU), nor the
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balance (B) changes by more than a prescribed threshold value, which has been set at
1 W m2 In method (3), on the other hand, iteration continues until either the
magnitude of the balance becomes less than the threshold value or none of three
fluxes, H, G, and E, changes by more than the threshold value between succeeding
steps.

Tables 14 and 15 present samples of such results. In each table, on each time step
specified in the first column (ns) are four models: A2 that solves the linearized balance
equations using the old algorithm and without iteration, B20 and B2 that both solve
the linearized balance equation using the new algorithm, but B20 without and B2 with
iteration and, C2 that solves the equations nonlinearly with iteration. The third
column, under heading 'm’, gives the number of iteration steps. The fourth column,
under heading 'FD', shows the values of downward radiative flux, which are an output
from a subprogram that calculates the radiative transfer within the atmosphere. The
next to last column, under heading 'S', presents the net values of three fluxes of heat
of phase change, that is, wp, wc, and wm, and the last column gives the balance, that
is, the difference between the sum of the outgoing fluxes and the incoming flux, FD.
Table 14 is the result at gridpoint (2,2) and Table 15 the result at gridpoint (7,4).

The values from model A2 are included here to indicate the significance of the
differences among the other three models. We have drawn the following inferences
from these and other similar tables at other locations within the region of the study:

1. The changes in the surface outputs caused by differences in the method of
solution are far smaller than that produced with the change in formulas for the
exchange coefficient.

9.  Tteration does not necessarily reduce the balance when the balance equations
are linearized. Generally speaking, iterated solutions of the linearized equations come
closer to the iterated solutions of the full or nonlinear balance equations, but there are
few exceptions to this general rule and the improvement is at most a few percent of the
flux value itself.

3. The nonlinear iterative method obtains individual flux values that meet the

specified threshold criteria within a reasonable number of steps and may be considered
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the most accurate of all.

5. SUMMARY AND CONCLUSIONS

We analyzed the changes in formula recommended by the OSU group and
assessed their effects on the energy exchanges between the atmosphere and its
underlying earth. We also described in detail the rationale of the new procedure of
evaluating the surface variables that balance energy fluxes and considered different
levels of approximation in solving the balance equations. We then utilized GCM-
generated atmospheric conditions to carry out static tests on impacts of the changes
on the surface outputs over land in wintertime.

The results of tests confirmed our earlier notion that the modifications have only
minor influences on surface temperature and humidity in the sense that resulting
changes are small in comparison with their responses to synoptic conditions. Their
impacts on individual surface energy fluxes are, however, significantly greater and
likely to produce changes in the dynamics of the atmosphere with time.

The new formulas for surface-layer exchange coefficients were found to yield
greater diurnal amplitudes without affecting their phases in both temperature and
specific humidity at the surface, in response to reduced efficiencies of the surface
exchanges. The change is generally larger in the day than at night. As a result,on a
typical day where the diurnal cycle is well defined, the change in formulas brought
higher daily means and greater daily standard deviations. The corresponding changes
in fluxes are best seen in smaller values of the daily standard deviations of sensible-
heat and evaporative latent-heat fluxes. Daily mean values of these fluxes are, on the
other hand, of little value in representing this characteristic, because balanced values
of the individual fluxes are affected by other aspects of the environment.

The response of the model to the change in algorithm was found to be rather
different from that described above. We found, first of all, difference between the east
and the west. In the west, where large diurnal amplitudes in surface temperature

characterized the study period, the new algorithm yielded higher surface temperature
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and drier surface humidity, accompanied by more positive sensible heat flux but
smaller evaporative latent heat flux. The differences in magnitude of the fluxes were
as great as those due to the change in the formulas for the exchange coefficients. In
the east, where rain and overcast weather prevailed most of the period and dampened
the diurnal amplitudes, there was little difference in most of the surface outputs. The
limited size of samples of this study precludes us from determining whether the
climatic or synoptic conditions were responsible for this contrast.

The investigation into the method of solving the energy balance equation showed
that even though there are differences in the values of the outputs due to the
difference in method, those differences are generally much smaller than the differences
due to the change either in the formulas or in the algorithm. Within the currently
achievable accuracy on the individual flux values, we believe the non-iterative method
applied to the linearized balance equations can provide an adequate estimate of the
surface outputs.

Finally, we recommend that all the proposed changes be incorporated into the PL-

GSM for global runs and that the results be subjected to analysis over wider regions

for the dynamic effects in the global context.
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